Skip to main content

Advertisement

Log in

Bioaccumulation of cd and hg in Muscle of Juvenile Pacific Sharpnose Shark Rhizoprionodon longurio from the SE Gulf of California

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, the concentrations of Cd and Hg were measured in muscle of juvenile individuals at an importan fishing ground in southeastern Gulf of California to assess the health risk to human consumers considering elemental levels and rate of shark consumption in NW Mexico. Twenty-eight individuals were sampled in September 2019. Quantification of Hg was made by cold vapor-atomic absorption spectrophotometry, analyses of Cd were made by graphite furnace atomic absorption spectrophotometry. In general, average Hg (1.27 µg g−1 dry weight) concentrations were higher than Cd (0.059). In comparison to results of Cd and Hg in muscle of several species of genus Rhizoprionodon sp., our reported concentrations were comparable. Maximum permissible limits (Cd 0.5 and Hg 0.5 µg g−1 wet weight) in fish products for human consumption were not exceeded. Health risk assessment to shark consumers indicated that Hg is of more concern than Cd but no hazards exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams DH, McMichael RH (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 97:372–379

    Google Scholar 

  • Adel M, Mohammadmoradi K, Ley-Quiñonez CP (2017) Trace element concentrations in muscle tissue of milk shark, (Rhizoprionodon acutus) from the Persian Gulf. Environ Sci Pollut Res 6:5933–5937

    Article  Google Scholar 

  • Alatorre-Ramírez VG, Galván-Magaña F, Torres-Rojas YE (2013) Trophic habitat of the Pacific sharpnose shark, Rhizoprionodon longurio, in the Mexican Pacific. J Mar Biol Assoc UK 93(8):2217–2224

    Article  Google Scholar 

  • Ali H, Khan E (2018) Trophic transfer, bioaccumulation, and biomagnification of nonessential hazardous heavy metals and metalloids in food chains/ webs-Concepts and implications for wildlife and human health. Hum Ecol Risk Assess 25(6):1353–1376

    Article  Google Scholar 

  • Al-Reasi HA, Ababneh FA, Lean DR (2007) Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (δ13C and δ15N). Environ Toxicol Chem 26(8):1572–1581

    Article  CAS  Google Scholar 

  • Amezcua F, RuelasInzunza J, Coiraton C, SpanopoulosZarco P, PáezOsuna F (2022) A global review of cadmium, mercury, and selenium in sharks: geographical patterns, baseline levels and human health implications. Rev Environ Contam Toxicol 260:4

    Google Scholar 

  • Amorim-Lopes C, Willmer IQ, Araujo NLF, Pereira LH, Monteiro F, Rocha CC, Saint’Pierre TD, dos Santos LN, Siciliano S, Vianna M, Hauser-Davis RA (2020) Mercury screening in highly consumed sharpnose sharks (Rhizoprionodon lalandii and R. porosus) caught artisanally in southeastern Brazil. Elem Sci Anth 8(1):022.Boldrocchi G, Monticelli D, MoussaOmar Y, Bettinetti R (2019) Trace elements and POPs in two comercial shark species from Djibouti: Implications for human exposure. Sci Tot Environ 669:637–648

  • CONAPESCA (2017) Anuario Estadístico de Acuacultura y Pesca. Secretaría de Agricultura, Ganadería y Desarrollo Rural, Pesca y Alimentacóon. Comisión Nacional de Pesca. https://www.gob.mx/conapesca/documentos/anuario-estadistico-deacuacultura-y-pesca

  • Denton G, Breck W (1981) Mercury in tropical marine organisms form North Queensland. Mar Pollut Bull 12(4):116–121

    Article  CAS  Google Scholar 

  • Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. FAO, Rome

  • Fisk AT, Tittlemier SA, Pranschke JL, Norstrom RJ (2002) Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland shark. Ecology 83(8):2162–2172

    Article  Google Scholar 

  • Fistarol GO, Coutinho FH, Moreira AP, Venas T, Cánovas A, de Paula SE, Jr Coutinho R, de Moura RL, Valentin JL, Tenenbaum DR, Paranhos R, do Valle Rde A, Vicente AC, Amado Filho GM, Pereira RC, Kruger R, Rezende CE, Thompson CC, Salomon PS, Thompson FL, (2015) Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Front Microbiol 6:1232

    Article  Google Scholar 

  • Fréry N, Maury-Brachet R, Maillot E, Deheeger M, de Mérona B, Boudou A (2001) Gold-mining activities and mercury contamination of native amerindian communities in French Guiana: key role of fish in dietary uptake. Environ Health Persp 109(5):449–456

    Google Scholar 

  • Frías-Espericueta MG, Cárdenas-Nava NG, Márquez-Farías JF, Osuna-López JI, Muy-Rangel MD, Rubio-Carrasco W, Voltolina D (2014) Cadmium. copper, lead and zinc concentrations in female and embryonic Pacific sharpnose shark (Rhizoprionodon longurio) tissues. Bull Environ Contam Toxicol 93:532–535

  • Frías-Espericueta MG, Ruelas-Inzunza J, Benítez-Lizárraga R, Escobar-Sánchez O, Osuna-Martínez C, Delgado-Álvarez CG, Aguilar-Juárez M, Osuna-López JI, Voltolina D (2019) Risk assessment of mercury in sharks (Rhizoprionodon longurio) caught in the coastal zone of Northwest Mexico. J Consum Prot Food Saf 14:349–354

  • Furlong-Estrada E, Tovar-Águila J, Pérez-Jiménez JC, Ríos-Jara E (2015) Resilience of Sphyrna lewini, Rhizoprionodon longurio, and Carcharhinus falciformis at the entrance to the Gulf of California after three decades of exploitation. C Mar 41(1):49–63

    Article  Google Scholar 

  • García-Hernández J, Cadena-Cárdenas L, Betancourt-Lozano M, García-De-La-Parra LM, García-Rico L, Márquez-Farías F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicol Environ Chem 89:507–522

    Article  Google Scholar 

  • Gil-Manrique B, Nateras-Ramírez O, Martínez-Salcido AI (2017) Cadmium and lead concentrations in hepatic and muscle tissue of demersal fish from three lagoon systems (SE Gulf of California). Environ Sci Pollut Res 24(14):12927–12937

    Article  CAS  Google Scholar 

  • Hammerschlag N, Davis DA, Mondo K, Seely MS, Murch SJ, Glover WB, Divoll T, Evers DC, Mash DC (2016) Cyanobacterial neurotoxin BMAA and mercury in sharks. Toxins 8:238

    Article  Google Scholar 

  • Hurtado-Banda R, Gómez-Alvarez A, Márquez-Farías JF, Córdoba-Figueroa M, Navarro-García G, Medina-Juárez LA (2012) Total mercury in liver and muscle tissue of two coastal sharks from the Northwest of Mexico. Bull Environ Contam Toxicol 88:971–975

    Article  CAS  Google Scholar 

  • Lacerda LD, Paraquetti HHM, Marins RV, Rezende CE, Zalmon IR, Gomes MP, Farias V (2000) Mercury content in shark species from the South-Eastern Brazilian coast. Rev Bras Biol 60:571–576

    Article  CAS  Google Scholar 

  • Lyle JM (1986) Mercury and selenium concentrations in sharks from Northern Australian waters. Aust J Mar Fresh Res 37:309–321

    CAS  Google Scholar 

  • Márquez-Farías JF, Corro-Espinosa D, Castillo-Géniz JL(2005) Observations on the biology of the Pacific sharpnose shark, Rhizoprionodon longurio (Jordan & Gilbert, 1882), captured in southern Sinaloa, México. J Northwest Atl Fish Sci 35:107–114

  • McKinney MA, Dean K, Hussey NE, Cliff G, Wintner SP, Dudley SFJ, Zungu MP, Fisk AT (2016) Global versus local causes and health implications of high mercury concentrations in sharks from the east coast of South Africa. Sci Tot Environ 541:176–183

    Article  CAS  Google Scholar 

  • MESL (1997) Standard Operating Procedures: International Atomic Energy Agency. Inorganic Laboratory, Monaco

    Google Scholar 

  • Millward GE, Turner A (2010) Metal Pollution. In: Turekian KK (Ed.) Marine Chemistry and Geochemistry, a Derivative of Encyclopedia of Ocean Sciences, 2nd edition. Academic Press, San Diego. pp 265–272

  • Moody JR, Lindstrom RN (1997) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267

    Article  Google Scholar 

  • Newman MC, Unger MA (2002) Fundamentals of Ecotoxicology. Lewis Publishers, Boca Raton

    Google Scholar 

  • NOM (2009) NORMA Oficial Mexicana NOM-242-SSA1-2009, Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba, Mexico

    Google Scholar 

  • Núnez-Nogueira G (2005) Concentration of essential and non-essential metals in two shark species commonly caught in Mexican (Gulf of Mexico) coastline, p. 451–474. In: Botello AV, Rendón-von Osten J, Gold-Bouchot G, Agraz-Hernández C (Eds.). Golfo de México Contaminación e Impacto Ambiental: Diagnóstico y Tendencias, 2da Edición. Univ. Autón. de Campeche, Univ. Nal. Autón. de México, Instituto Nacional de Ecología. 696 p

  • Okocha RC, Adedeji OB (2011) Overview of cadmium toxicity in fish. J App Sci Res 7(7):1195–1207

    Google Scholar 

  • Ong MC, Gan SL (2017) Assessment of metallic trace elements in the muscles and fins of four landed elasmobranchs from Kuala Terengganu Waters, Malaysia. Mar Pollut Bull 124:1001–1005

    Article  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298

    Article  CAS  Google Scholar 

  • Perello G, Marti-Cid R, Llobet JM, Domingo JL (2008) Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56(23):11262–11269

    Article  CAS  Google Scholar 

  • Powell JH, Powell RE, Fielder DR (1981) Trace element concentrations in tropical marine fish at Bougainville Island, Papua New Guinea. Wat Air Soil Pollut 16:143–158

    Article  CAS  Google Scholar 

  • Rumbold D, Wasno R, Hammerschlag N, Volety A (2014) Mercury accumulation in sharks from the coastal waters of southwest Florida. Arch Environ Contam Toxicol 67(3):402–412

    Article  CAS  Google Scholar 

  • Somerville R, Fisher M, Persson L, EhnertRusso S, Gelsleichter J, BielmyerFraser G (2020) Analysis of trace element concentrations and antioxidant enzyme activity in muscle tissue of the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Arch Environ Contam Toxicol 79:371–390

    Article  CAS  Google Scholar 

  • US EPA (2000) Handbook for non-cancer health effects evaluation. Washington. https://nepis.epa.gov/Exe/ZyNET.exe

  • Viana F, Huertas R, Danulat E (2005) Heavy metal levels in fish from coastal waters of Uruguay. Arch Environ Contam Toxicol 48:530–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Suárez-Gutiérrez for figure preparation, H. Bojórquez-Leyva for laboratory analysis, and G. Zugasti for laboratory equipment maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Spanopoulos-Zarco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Arellano, N., Ruelas-Inzunza, J., Amezcua, F. et al. Bioaccumulation of cd and hg in Muscle of Juvenile Pacific Sharpnose Shark Rhizoprionodon longurio from the SE Gulf of California. Bull Environ Contam Toxicol 109, 459–463 (2022). https://doi.org/10.1007/s00128-022-03550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03550-2

Keywords